Dynamic Programming Exercises

Practice 07.04

by Marina Barsky

Exercise 1. From idea to pseudocode

Subset sum

Subset sum problem given a set S of integers is there a subset which sums up to k ?

Sample instance: $\mathrm{S}=\{3,2,1,4,1,5\}, \mathrm{k}=8$

Total \rightarrow	0	1	2	3	4	5	6	7	8	Note that we als need row 0 as a base case
-	T	F	F	F	F	F	F	F	F	
3	T	F	F	T	F	F	F	F	F	
2	T	F	T	T	F	T	F	F	F	
1	T	T	T	T	T	T	T	F	F	
4	T	T	T	T	T	T	T	T	T	
1	T									
5	T									

Recurrence relation

- Give a recurrence relation to compute subset sum: Let $T(i, j)$ be the answer to the following question: Is it possible to obtain sum j using only first i integers: $\{1, \ldots, i\}$?

Recurrence relation: solution

Base case:
$T(i, j)=$ True if $\mathrm{j}=0$
$T(i, j)=$ False if $i=0, j>0$

Recurrence:
$\mathrm{T}(\mathrm{i}, \mathrm{j})=$ True if $\mathrm{T}(\mathrm{i}-1, \mathrm{j})$ is True or $\mathrm{T}(\mathrm{i}-1, \mathrm{j}-\mathrm{S}[\mathrm{i}])$ is True

Pseudocode

$$
\begin{aligned}
& T(i, j)=\text { True if } j=0, T(i, j)=\text { False if } i=0, j>0 \\
& T(i, j)=\text { True if } T(i-1, j) \text { is True or } T(i-1, j-S[i j) \text { is True }
\end{aligned}
$$

Pseudocode: solution

$$
\begin{aligned}
& T(i, j)=\text { True if } j=0, T(i, j)=\text { False if } i=0, j>0 \\
& T(i, j)=\text { True if } T(i-1, j) \text { is True or } T(i-1, j-S[i]) \text { is True }
\end{aligned}
$$

Algorithm subset_sum(array S of size n, integer k)

create Table $[(n+1) \times(k+1)]$ K Zero-based for i from 0 to n :

Table[i][0] : = True for j from 1 to n :

Table[0][j]: = False
for i from 1 to n : for j from 1 to k : Table[i][j]: = Table[i - 1][j] or Table[i-1][i-S[i]]
if Table[i][k] : return True
return False

On the exam you may also be asked to provide a pseudocode for recovering items which sum up to k

Exercise 2. Improving recursive solution with memorization and DP (simple)

From recurrence relation to algorithm

Given the following recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(0)=1, T(1)=2 \\
& T(n)=T(n-1)^{*} T(n-2) \text {, for } n>1
\end{aligned}
$$

Convert this relation into a recursive algorithm for computing T given n .

Recursive Solution

Given the following recurrence relation:

$$
\begin{aligned}
& T(0)=1, T(1)=2 \\
& T(n)=T(n-1)^{*} T(n-2), \text { for } n>1
\end{aligned}
$$

Convert this relation into a recursive algorithm for computing T given n .

Algorithm T(n)
if $\mathrm{n}=0$: return 1
if $n=1$: return 2
return $T(n-1)^{\star} T(n-2)$

Running time of the recursive algorithm?

Given the following recurrence relation:

$$
\begin{aligned}
& T(0)=1, T(1)=2 \\
& T(n)=T(n-1)^{*} T(n-2), \text { for } n>1
\end{aligned}
$$

Convert this relation into a recursive algorithm for computing T given n .

Algorithm T(n)
if $\mathrm{n}=0$: return 1
if $n=1$: return 2
return $T(n-1)^{*} T(n-2)$
What is the running time of this algorithm?

Running time solution

Given the following recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(0)=1, \mathrm{~T}(1)=2 \\
& \mathrm{~T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)^{\star} T(\mathrm{n}-2) \text {, for } \mathrm{n}>1
\end{aligned}
$$

Convert this relation into a recursive algorithm for computing T given n .

Algorithm $T(n)$
if $n=0$: return 1
if $n=1$: return 2
return $T(n-1)^{*} T(n-2)$
Running time $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Memoization/DP

Algorithm T(n)

if $n=0$: return 1
if $n=1$: return 2
return $T(n-1) * T(n-2)$

Can we avoid repeating computations applying memorization/DP?

Memoization: solution

Algorithm T(n, A)
if $\mathrm{n}=0$ or $\mathrm{n}=1$: return $\mathrm{A}[\mathrm{n}]$
if $\mathrm{A}[\mathrm{n}-1]$ is Null:
$A[n-1]:=T(n-1, A)$
if $\mathrm{A}[\mathrm{n}-2]$ is Null:
$A[n-2]:=T(n-2, A)$
return $A[n-1]$ * $A[n-2]$:
Algorithm T_memoization(n) create array A of size $\mathrm{n}+1$ filled with Nulls

```
A[0]:= 1
A[1]: = 2
                                    zero-
                                    based
call T(n, A)
```


Dynamic Programming: solution

Algorithm T_DP(n)

create array A of size $\mathrm{n}+1$ filled with Nulls
$\mathrm{A}[0]:=1$
A[1]: $=2$
for i from 2 to n :
$A[i]:=A[i-1]^{*} A[i-2]$
return $A[n]$

Exercise 3. Improving recursive solution with DP (more complex)

From recurrence relation to pseudocode

Given the following recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=2 \\
& \mathrm{~T}(\mathrm{n})=\sum_{i=1}^{n-1}(2 \times T(i) \times T(i-1) \text { for } \mathrm{n}>1
\end{aligned}
$$

Convert this relation into a recursive algorithm for computing T given n .

Recursive solution

Given the following recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=2 \\
& \mathrm{~T}(\mathrm{n})=\sum_{i=1}^{n-1}(2 \times T(i) \times T(i-1)) \text { for } \mathrm{n}>1
\end{aligned}
$$

Algorithm T(n)
if $n=0$ or $n=1$: return 2
sum: = 0
for ifrom 1 to $\mathrm{n}-1$:
sum: += $2^{\star} T(i)^{\star} T(i-1)$
return sum

Improve recursion with DP

Given the following recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=2 \\
& \mathrm{~T}(\mathrm{n})=\sum_{i=1}^{n-1}(2 \times T(i) \times T(i-1)) \text { for } \mathrm{n}>1
\end{aligned}
$$

Algorithm T(n)
if $n=0$ or $n=1$: return 2
sum: = 0
for ifrom 1 to $\mathrm{n}-1$:
sum: += $2^{\star} T(i)^{*} T(i-1)$
return sum

Improving recursion with DP: solution

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=2 \\
& \mathrm{~T}(\mathrm{n})=\sum_{i=1}^{n-1}(2 \times T(i) \times T(i-1))
\end{aligned}
$$

To see the solution - run through examples:
$\mathrm{T}(0)=\mathrm{T}(1)=2$
$\mathrm{T}(2)=2^{*} \mathrm{~T}(1) * \mathrm{~T}(0)$
$\mathrm{T}(3)=2^{*} \mathrm{~T}(1)^{\star} \mathrm{T}(0)+2^{*} \mathrm{~T}(2)^{*} \mathrm{~T}(1)$
$\mathrm{T}(4)=2^{*} \mathrm{~T}(1)^{\star} \mathrm{T}(0)+2^{*} \mathrm{~T}(2)^{\star} \mathrm{T}(1)+2^{*} \mathrm{~T}(3)^{*} \mathrm{~T}(2)$

Improving recursion with DP: solution

To see the solution - run through examples:

```
\(\mathrm{T}(0)=\mathrm{T}(1)=2\)
\(\mathrm{T}(2)=2^{*} \mathrm{~T}(1)^{*} \mathrm{~T}(0)\)
\(\mathrm{T}(3)=2^{\star} \mathrm{T}(1)^{\star} \mathrm{T}(0)+2^{\star} \mathrm{T}(2)^{\star} \mathrm{T}(1)\)
\(\mathrm{T}(4)=2^{*} \mathrm{~T}(1)^{*} \mathrm{~T}(0)+2^{*} \mathrm{~T}(2)^{\star} \mathrm{T}(1)+2^{*} \mathrm{~T}(3)^{*} \mathrm{~T}(2)\)
```

Algorithm T_DP(n)
create array A of size $\mathrm{n}+1$
$\mathrm{A}[0]:=\mathrm{A}[1]:=2$
for i from 2 to n :
$A[i]:=0$
for j from 1 to $\mathrm{i}-1$:
$A[i]:+=2^{*} A[i]^{*} A[i-1]$
return $A[n]$

Improving recursion with DP: solution

To see the solution - run through examples:
$\mathrm{T}(0)=\mathrm{T}(1)=2$
$\mathrm{T}(2)=2^{*} \mathrm{~T}(1)^{\star} \mathrm{T}(0)$
$\mathrm{T}(3)=2^{*} \mathrm{~T}(1)^{\star} \mathrm{T}(0)+2^{*} \mathrm{~T}(2)^{\star} \mathrm{T}(1)$
$\mathrm{T}(4)=2^{*} \mathrm{~T}(1)^{*} \mathrm{~T}(0)+2^{*} \mathrm{~T}(2)^{\star} \mathrm{T}(1)+2^{*} \mathrm{~T}(3)^{*} \mathrm{~T}(2)$
Algorithm T_DP(n)
create array A of size $\mathrm{n}+1$
$\mathrm{A}[0]:=\mathrm{A}[1]:=2$
for i from 2 to n :
$A[i]:=0$
for j from 1 to $\mathrm{i}-1$:
$A[i]:+=2^{*} A[i]^{*} A[i-1]$
Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Can we do better?
return $A[n]$

Improving recursion with DP: solution

To see the solution - run through examples:
$\mathrm{T}(0)=\mathrm{T}(1)=2$
$\mathrm{T}(2)=2^{*} \mathrm{~T}(1)^{\star} \mathrm{T}(0)$
$\mathrm{T}(3)=2^{*} \mathrm{~T}(1) * \mathrm{~T}(0)+2^{*} \mathrm{~T}(2) * \mathrm{~T}(1)$
$\mathrm{T}(4)=\underbrace{2 * \mathrm{~T}(1) * \mathrm{~T}(0)+2 * \mathrm{~T}(2) * \mathrm{~T}(1)}_{\mathrm{T}(3)}+2^{*} \mathrm{~T}(3) * \mathrm{~T}(2)$
Algorithm T_DP_fast(n)
create array A of size $n+1$
$\mathrm{A}[0]:=\mathrm{A}[1]:=2$
$A[2]:=2^{*} A[0]^{*} A[1]$
Complexity: O(n)
for i from 3 to n :

$$
A[i]:=A[i-1]+2^{*} A[i-1]^{*} A[i-2]
$$

return $A[n]$

