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Exercise 1. From idea to 
pseudocode
Subset sum



Subset sum problem
given a set S of integers is there a subset 
which sums up to k?

Sample instance: S = {3, 2, 1, 4, 1, 5}, k = 8

Total → 0 1 2 3 4 5 6 7 8

- T F F F F F F F F

3 T F F T F F F F F

2 T F T T F T F F F

1 T T T T T T T F F

4 T T T T T T T T T

1 T

5 T

3 + 1 + 4 = 2 + 1 + 5

Note that we also 

need row 0 as a 

base case



Recurrence relation

• Give a recurrence relation to compute subset sum:

Let T(i,j) be the answer to the following question:  

Is it possible to obtain sum j using only first i integers: 
{1,…,i}?



Recurrence relation: solution

Base case:

T(i,j) = True if j = 0

T(i,j) = False if i=0, j>0

Recurrence:

T(i,j) = True if T(i-1,j) is True or T(i – 1, j – S[i]) is True



Pseudocode

T(i,j) = True if j = 0, T(i,j) = False if i=0, j>0

T(i,j) = True if T(i-1,j) is True or T(i – 1, j – S[i]) is True



Pseudocode: solution
T(i,j) = True if j = 0, T(i,j) = False if i=0, j>0

T(i,j) = True if T(i-1,j) is True or T(i – 1, j – S[i]) is True

create Table [(n+1)x(k+1)]

for i from 0 to n:

Table[i][0] : = True

for j from 1 to n:

Table[0][j]: = False

for i from 1 to n:

for j from 1 to k:

Table[i][j]: = Table[i – 1][j] or Table[i-1][j-S[i]]

if Table[i][k] :

return True

return False

Zero-based 

2D array

On the exam 

you may also 

be asked to 

provide a 

pseudocode 

for recovering 

items which 

sum up to k

Algorithm subset_sum(array S of size n, integer k)



Exercise 2. Improving recursive 
solution with memorization and 
DP (simple)



From recurrence relation to algorithm

Given the following recurrence relation:

T(0) = 1, T(1) = 2

T(n) = T(n-1)*T(n-2), for n > 1

Convert this relation into a recursive algorithm for 

computing T given n.



Recursive Solution

Given the following recurrence relation:

Convert this relation into a recursive algorithm for 

computing T given n.

if n=0: return 1

if n=1: return 2

return T(n -1)*T(n-2)

Algorithm T(n)

T(0) = 1, T(1) = 2

T(n) = T(n-1)*T(n-2), for n > 1



Given the following recurrence relation:

Convert this relation into a recursive algorithm for 

computing T given n.

Algorithm T(n)

Running time of the recursive algorithm?

What is the running time of this algorithm?

T(0) = 1, T(1) = 2

T(n) = T(n-1)*T(n-2), for n > 1

if n=0: return 1

if n=1: return 2

return T(n -1)*T(n-2)



Given the following recurrence relation:

Convert this relation into a recursive algorithm for 

computing T given n.

Algorithm T(n)

Running time solution

Running time O(2n)

T(0) = 1, T(1) = 2

T(n) = T(n-1)*T(n-2), for n > 1

if n=0: return 1

if n=1: return 2

return T(n -1)*T(n-2)



Memoization/DP

Can we avoid repeating computations applying 

memorization/DP? 

Algorithm T(n)

if n=0: return 1

if n=1: return 2

return T(n -1)*T(n-2)



Memoization: solution

if n=0 or n=1: return A[n]

if A[n-1] is Null:  

A[n-1]: = T(n -1, A)

if A[n-2] is Null:  

A[n-2]: = T(n -2, A) 

return A[n-1] * A[n-2]: 

create array A of size n+1 

filled with Nulls

A[0]: = 1

A[1]: = 2

call T(n, A)

Algorithm T_memoization(n)

zero-

based

Algorithm T(n, A)



Dynamic Programming: solution

create array A of size n+1 filled with Nulls

A[0]: = 1

A[1]: = 2

for i from 2 to n:

A[i]: = A[i-1]*A[i-2]

return A[n]

Algorithm T_DP(n)



Exercise 3. Improving recursive 
solution with DP (more complex)



From recurrence relation to pseudocode

Given the following recurrence relation:

T(0) = T(1) = 2

T(n) = σ𝑖=1
𝑛−1(2 × 𝑇(𝑖) × 𝑇 𝑖 − 1 )for n > 1

Convert this relation into a recursive algorithm for 

computing T given n.



Recursive solution
Given the following recurrence relation:

T(0) = T(1) = 2

T(n) = σ𝑖=1
𝑛−1(2 × 𝑇(𝑖) × 𝑇 𝑖 − 1 ) for n > 1

Algorithm T(n)

if n=0 or n=1: return 2

sum: = 0

for i from 1 to n – 1:

sum: += 2*T(i)*T(i-1)

return sum



Given the following recurrence relation:

T(0) = T(1) = 2

T(n) = σ𝑖=1
𝑛−1(2 × 𝑇(𝑖) × 𝑇 𝑖 − 1 ) for n > 1

Algorithm T(n)

if n=0 or n=1: return 2

sum: = 0

for i from 1 to n – 1:

sum: += 2*T(i)*T(i-1)

return sum

Improve recursion with DP



Improving recursion with DP: solution

To see the solution – run through examples:

T(0) = T(1) = 2

T(2) = 2*T(1)*T(0)

T(3) = 2*T(1)*T(0) + 2*T(2)*T(1)

T(4) = 2*T(1)*T(0) + 2*T(2)*T(1) + 2*T(3)*T(2)

T(0) = T(1) = 2

T(n) = σ𝑖=1
𝑛−1(2 × 𝑇(𝑖) × 𝑇 𝑖 − 1 )



Improving recursion with DP: solution

To see the solution – run through examples:

T(0) = T(1) = 2

T(2) = 2*T(1)*T(0)

T(3) = 2*T(1)*T(0) + 2*T(2)*T(1)

T(4) = 2*T(1)*T(0) + 2*T(2)*T(1) + 2*T(3)*T(2)

create array A of size n+1

A[0]: = A[1]: =2

for i from 2 to n:

A[i]: = 0

for j from 1 to i-1:

A[i]: += 2*A[i]*A[i-1]

return A[n]

Algorithm T_DP(n)



Improving recursion with DP: solution

To see the solution – run through examples:

T(0) = T(1) = 2

T(2) = 2*T(1)*T(0)

T(3) = 2*T(1)*T(0) + 2*T(2)*T(1)

T(4) = 2*T(1)*T(0) + 2*T(2)*T(1) + 2*T(3)*T(2)

create array A of size n+1

A[0]: = A[1]: =2

for i from 2 to n:

A[i]: = 0

for j from 1 to i-1:

A[i]: += 2*A[i]*A[i-1]

return A[n]

Algorithm T_DP(n)

Complexity: O(n2)

Can we do better?



Improving recursion with DP: solution

To see the solution – run through examples:

T(0) = T(1) = 2

T(2) = 2*T(1)*T(0)

T(3) = 2*T(1)*T(0) + 2*T(2)*T(1)

T(4) = 2*T(1)*T(0) + 2*T(2)*T(1) + 2*T(3)*T(2)

create array A of size n+1

A[0]: = A[1]: =2

A[2]: = 2*A[0]*A[1]

for i from 3 to n:

A[i]: = A[i-1] + 2*A[i-1]*A[i-2]

return A[n]

Algorithm T_DP_fast(n)

Complexity: O(n)

T(3)


